electrons would be $(8)(0.025)(24)=4.8$ e.v. If there is a gain of say 5.6 e.v. in bonding, there is a profit of 0.8 e.v. All the figures are of course only illustrative, but they indicate that an appreciable net gain in bond energy by $\mathrm{p} \pi-\mathrm{d} \pi$ hybridization is not unreasonable.

It should be especially noted that the gain in bond energy by hybridization goes linearly with β (cf. eq. 10), while the cost goes as β^{2}. Hence if β^{2} is sufficiently small the gain will certainly exceed the cost.

Single bonds in Br_{2} and I_{2} should be strengthened in a way similar to that for Cl_{2} by d hybridization, as should also S-S, P-P and other second-row and higher-row single bonds.

Acknowledgment.-The writer is indebted to Dr. L. E. Orgel for reading the manuscript and for pointing out the desirability of a discussion here of the importance and justification of the use of "unnatural" atomic orbitals with increased Z values in hybridization.
Chicago, Illinois
[Contribution from the Laboratory of Molecular Structure and Spectra, Department of Physics, The University of Chicago]

Bond Angles in Water-Type and Ammonia-Type Molecules and Their Derivatives ${ }^{1}$

By R. S. Mulliken

Received August 12, 1954
The factors which may determine the smaller bond angles in the hydrides of the higher-row fifth-column and sixth-column atoms as compared with NH_{3} and $\mathrm{H}_{2} \mathrm{O}$, and the much larger energies required to flatten PH_{3} and AsH_{3} to planar form than for NH_{3}, are discussed using LCAO molecular orbital and valence bond theory. It is shown that the observed differences can reasonably be understood as a result of d hybridization in the e-type or b_{2}-type bonding molecular orbitals, together perhaps with smaller nonbonded repulsions between H atoms, in the higher-row hydrides. Significant factors affecting the bond angles in the halides of fifth-column and sixth-column atoms are also surveyed.

Introduction

According to quantum-mechanical valence-bond theory in its simplest form, the bonds in molecules such as $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}$, . . ., and their derivatives and $\mathrm{NH}_{3}, \mathrm{PH}_{3}, \ldots$, and their derivatives should make 90° angles with one another for pure p-electron valence. The actual observed angles are usually considerably greater (see Table I for some exam-
to 90° when their first-row analogs $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$ do not, ${ }^{5,6}$ nor why the energy required to make NH_{3} planar (0.26 e.v.) is so much smaller than for PH_{3} (1.3 e.v.) or AsH_{3} (1.5 e.v.). ${ }^{2 b}$ What seems to be a reasonable explanation is presented below. Some discussion of the lack of corresponding differences for substituted compounds (e.g., PF_{3} as against NH_{3}) is also given.

Table I
ples). ${ }^{2}$ This fact can be understood qualitatively in terms of partial s, p hybridization, non-bonded repulsions between H (or other substituted) atoms, and other factors. ${ }^{3.4}$ However, no adequate explanation seems to have been offered as to why $\mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}, \ldots$, and $\mathrm{PH}_{3}, \mathrm{AsH}_{3}, \ldots$, , have angles close
(1) This work was assisted in part by the Office of Scientific Research, Air Research and Development Command, under Project R-351-40-4 of Contract AF 18(600)-471 with The University of Chicago.
(2) For references on bond angles, $c f$. (a) A. D. Walsh, J. Chem. Soc., 2266 (1953); G. Herzberg, "Infrared and Raman Spectra," Van Nostrand Co., New York, N. Y., 1945; (b) R. E. Weston, This Journal, 76, 2645 (1954); (c) P. Kisliuk, J. Chem. Phys., 22, 86 (1954).
(3) See D. F. Heath and J. W. Linnett, Trans. Faraday Soc., 44, 556 (1947), on $\mathrm{H}_{2} \mathrm{O}$; D. F. Heath, J. W. Linnett and Wheatley, ibid., 46, 137 (1950), on $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}, \mathrm{NH}_{3}, \mathrm{AsH}_{3}, \mathrm{CH}_{4}$, etc.; T. Simanouti, J. Chem. Phys., 17, 245, 734 (1949); D. F. Heath and J. W. Linnett, ibid., 18, 147 (1950); J. Duchesne and I. Ottelet, ibid., 17, 1354 (1949); J. Phys. Rad., 11, 119 (1950). Also ref. 2c.
(4) A. D. Walsh, J. Chem. Soc., 2260 (1953). However, Walsh's assumption that A atom s-pz hybridization is absent in the MOs of AH_{2} and AB_{2} molecules for a 90° bond angle cannot be accepted.

Fifth-Column Hydrides

The non-localized MO (molecular orbital) structures of hydrides of the type AH_{n} have been described qualitatively in earlier papers. ${ }^{7}$ For NH_{3} the structure is

$$
\begin{equation*}
\text { Pyramidal } \mathrm{NH}_{2}:\left(1 a_{1}\right)^{2}\left(2 a_{1}\right)^{2}(1 e)^{4}\left(3 a_{1}\right)^{2} \tag{1}
\end{equation*}
$$

(5) However, C. A. Burns. Jr., and W. Gordy [Phys. Rev., 92, 274 (1953) 1 in order to account for observed asymmetry in nuclear quadrupole coupling in $\mathrm{H}_{2} \mathrm{~S}$, have postulated considerable amounts of d as well as s hybridization, and state that qualitative estimates indicate that such hybridization is in harmony with the observed bond angle.
(6) Linnett and Poe (Trans. Faraday Soc., 47, 1033 (1951)) have emphasized that the bond angles in NH_{8} and $\mathrm{H}_{8} \mathrm{O}$ approximate to those for tetrahedral hybrid valence, and have made calculations which favor this view (but see T.-Y. Wu, J. Chem. Phys., 22, 1125 (1954)). Refinement of the same calculations and their extension to $\mathbf{P H}_{\mathbf{z}}$ by Mellish and Linnett (Trans, Faraday Soc., 80, 657 (1954)), predict close approximation to tetrahedral angles for PH_{8} as well as NH_{1}, in disagreement with what is observed.
(7) R. S. Mulliken, J. Chem. Phys., 1, 492 (1933); 3, 506 (1935).

The MOs in (1) are listed in order of increasing energy, with the principal bonding MOs marked B; the rest are non-bonding or nearly so. All the MOs are classified according to their group-theoretical species for the observed pyramidal symmetry $\left(\mathrm{C}_{3 v}\right)$. It will be helpful also to consider the electronic structure which NH_{3} would have if it were flattened to a planar form (symmetry $\mathrm{D}_{3 \mathrm{k}}$).

$$
\text { Planar } \mathrm{NH}_{3}: \begin{gather*}
\left(1 \mathrm{a}_{1}^{\prime}\right)^{2}\left(2 \mathrm{a}_{1}^{\prime}\right)^{2}\left(1 \mathrm{e}^{\prime}\right)^{4}\left(1 \mathrm{a}_{2}^{\prime \prime}\right)^{2} \tag{2}\\
\mathrm{~B}
\end{gather*}
$$

For convenient reference, the group-theory tables defining the MO species for symmetries $\mathrm{D}_{3 \mathrm{~h}}$ and C_{sv} are given in Table II, and their correlation when the symmetry is reduced from $\mathrm{D}_{3 \mathrm{~h}}$ to $\mathrm{C}_{3 \mathrm{v}}$ is shown.

Table II

The forms of the MOs in (1) and (2), in LCAO approximation, are

The AOs (atomic orbitals) $1 \mathrm{~s}_{\mathrm{N}}, 2 \mathrm{~s}_{\mathrm{N}}, 2 \mathrm{pz}, 2 \mathrm{p} \pi_{\mathrm{N}}$, are normalized N atom AOs, with $2 \mathrm{p} \pi_{\mathrm{N}}$ representing a 2 -fold degenerate pair, say $2 \mathrm{px}_{\mathrm{N}}$ and $2 \mathrm{py}_{\mathrm{N}}$. The z-axis lies in the symmetry axis of the molecule. The MO $1 a_{1}$ or $1 a_{1}{ }^{\prime}$ is nearly pure $1 s_{N}$, while the other $\mathrm{a}_{1} \mathrm{MOs}$ are nearly free from $1 \mathrm{~s}_{\mathrm{N}} .{ }^{8}$. Since the MO species e or e^{\prime} is 2 -fold degenerate, there are two $\mathrm{e}\left(\mathrm{H}_{3}\right)$ or $\mathrm{e}^{\prime}\left(\mathrm{H}_{3}\right)$ GOs (group orbitals), which may conveniently be chosen as the two orthonormal forms given in (5), or in other ways. $\quad S_{\mathrm{b}}$ in (5) is the overlap integral between any two adjacent H atoms.

It will be noted that in the passage from planar to pyramidal NH_{3}, the $1 \mathrm{a}_{2}^{\prime \prime}$ and the several $\mathrm{a}_{1}^{\prime} \mathrm{MOs}$ of planar NH_{3} all become a_{1} MOS ($c f$. Table II) and so become partially mixed (s-pz hybridization). In particular, $1 a_{2}^{\prime \prime}$ goes over into $3 a_{1}$, but undoubtedly $3 \mathrm{a}_{1}$ is still mainly composed of $2 \mathrm{pz}_{\mathrm{n}}$, i.e., $\alpha_{3 \mathrm{t}}$ in eq. 3 as applied to $3 \mathrm{a}_{1}$ is no doubt the largest coefficient. The fact that pyramidal NH_{3} is more stable than planar NH_{3} (but by only ${ }^{1 / 4}$ e.v.) ${ }^{2 \mathrm{~b}}$ may be attributed to an over-all gain in bond energy as a net result of $\mathrm{s}-\mathrm{pz}$ mixing in the $2 \mathrm{a}_{1}$ and $3 \mathrm{a}_{1} \mathrm{MOs}$. (It seems probable that there is a strong increase

[^0] ser R. S. Mulliken, I. Cifem. Pioys., 19, y12 (19:1).
in bonding power in going from $2 a_{1}^{\prime}$ to $2 a_{1}$, but that the non-bonding $1 a_{2}^{\prime \prime}$ becomes slightly antibonding in going to $3 \mathrm{a}_{1}$.)

LCAO MO theory thus makes it qualitatively understandable why the HNH angles in NH_{3} are less than the 120° values of planar NH_{3}, but provides no ready explanation as to why they have just the observed value. Values of 90° or less would not be astonishing according to qualitative LCAO MO theory, according to which there is nothing critical about the angle 90°. In particular, $2 \mathrm{~s}-2 \mathrm{pz}$ hybridization must still be present, presumably strong, and perhaps still increasing, in the a_{1} MOs for 90° and smaller angles.

On the other hand, qualitative VB (valencebond) theory, in its usual simple form assuming $\mathrm{N}-\mathrm{H}$ bond directions to coincide with symmetry axes of AOs, would associate $90^{\circ}, 109^{\circ} 28^{\prime}$, and 120° angles, respectively, with pure p valence, tetrahedral s-p hybridization, and trigonal s-p hybridization. ${ }^{5}$

Although qualitative LCAO theory does not explain why the pyramidalization of planar NH_{3} stops at just $106^{\circ} 46^{\prime}$, it does reveal a factor which should markedly resist departure of NH_{3} from planar form and so oppose the factor of $\mathrm{s}-\mathrm{pz}$ hybridization in the a_{1} MOs which favors such departure. This resisting factor arises from the fact that bonding in the strongly bonding 1 e or $1 \mathrm{e}^{\prime}$ MOs of (1) or (2) should be at a maximum for planar NH_{3}. Two reasons for this can be seen from the form of
(3) these MOs (cf. 3, 4 and 5). Firstly, the bonding overlap between $2 r \pi_{\mathrm{N}}$ and e(H_{3}) is somewhat larger for planar than for pyramidal NH_{3}; a computation gives 0.61 and 0.59 for the respective values of the overlap integral in the two cases. Secondly, there is an antibonding overlap, hence $\mathrm{H}-\mathrm{H}$ repulsion energy, within the e $\left(\mathrm{H}_{3}\right)$ GOs of (5), which increases strongly as the angle decreases. Assuming r_{NH} constant, the distance r_{HH} between any two H atoms is given by

$$
\begin{equation*}
r_{\mathrm{HH}}=2 r_{\mathrm{yH}} \sin \gamma / 2 \tag{6}
\end{equation*}
$$

where γ is the bond angle. Knowing $r_{\mathbf{H H}}$, the corresponding overlap integral S_{h} can be computed; the respective values are 0.29 and 0.33 for planar NH_{3} and $106^{\circ} 46^{\prime}$ pyramidal NH_{3}.

Another approach to one of the factors which should affect the bond angle is to examine from the VB theory standpoint how the non-bonded repulsions between the H atoms change from planar to pyramidal NH_{3}. The non-bonded repulsion energy can be estimated as

$$
\begin{equation*}
\operatorname{NBRE}=(3 / 2) A I S_{\mathrm{h}^{2}}^{2} /\left(1-S_{\mathrm{h}^{2}}\right) \tag{7}
\end{equation*}
$$

using a semi-empirical formula which has been proposed in an earlier paper, ${ }^{9}$ after introducing a factor 3 because there are three $\mathrm{H}-\mathrm{H}$ non-bonded pairs. In (7), A is 0.65 and I is the ionization energy (13.60 e.v.) for an H atom. The following results are obtained (see Table III). An increase of 0.45 e.v. in $\mathrm{H}-\mathrm{H}$ non-bonded repulsions on pyramidalization of NH_{3} is indicated. However, it should be pointed out that Heath and Linnett,
and Simanouti, ${ }^{3}$ have cited evidence which seems to indicate that non-bonded repulsions between H atoms are unimportant in hydrides AH_{n}.

Table III								
Estimated	Non-bonded		$\begin{gathered} \mathrm{ED} \mathrm{H} \\ (\mathrm{NBR} \end{gathered}$		Repulsion		Energies	
γ	$\begin{aligned} & r_{\mathrm{HH}} \\ & (\AA .) \end{aligned}$	H_{8}	$\begin{gathered} \text { NBRE } \\ \text { (e.v.) } \end{gathered}$		γ	$\begin{aligned} & \mathrm{PH}_{\mathbf{3}} \\ & { }^{\mathrm{H}} \mathrm{HH} \\ & \text { (A.) } \end{aligned}$	$S_{\text {h }}$	$\begin{gathered} \text { NBRE } \\ \left(\mathrm{e}, \mathrm{v}_{1}\right) \end{gathered}$
120°	1.76	0.29	1.21					
$106^{\circ} 46^{\prime}$	1.628	. 33	1.66	93°	18^{\prime}	2.06	0.20	0.57
90°	1.437	. 41	2.65	90°		2.00	. 22	. 64

In comparing the results in Table III with our preceding LCAO considerations, it is necessary to realize that the $\mathrm{H}-\mathrm{H}$ non-bonded repulsions of VB theory correspond in LCAO theory to the net resultant effect of (a) positive contributions, from $\mathrm{H}-\mathrm{H}$ bonding within $\mathrm{a}_{1}\left(\mathrm{H}_{3}\right)$, to over-all bonding in the ma_{1} set of MOs (cf. eq. 3 and 5); (b) negative contributions (see second preceding paragraph), from $\mathrm{H}-\mathrm{H}$ antibonding within $\mathrm{e}\left(\mathrm{H}_{3}\right)$, to over-all bonding in the le MOs. The NBRE's of Table III correspond to the excess of (b) over (a).

Perhaps the best over-all approach is to use the LCAO viewpoint for the resonance interactions between N atom and H_{3} group electrons, and the VB viewpoint for the interactions within the H_{3} group.

Summarizing, pyramidalization should strongly stabilize the a_{1} set of electrons in NH_{3} by permitting s-pz hybridization, but destabilize the e set through decreasingly favorable overlap; further, it should destabilize by increasing the $\mathrm{H}-\mathrm{H}$ non-bonded repulsions; the net result must be the observed slight (0.26 e.v.) stabilization at a pyramidal form with bond angle $106^{\circ} 46^{\prime}$.

Let us now turn to PH_{3} as an example of the higher-row analogs of NH_{3}. The MO electron configuration is
planar PH_{2} :
$\left(1 \mathrm{a}_{1}^{\prime}\right)^{2}\left(2 \mathrm{a}_{1}^{\prime}\right)^{2}\left(1 \mathrm{e}^{\prime}\right)^{4}\left(1 \mathrm{a}_{2}^{\prime \prime}\right)^{2}\left(3 \mathrm{a}_{1}^{\prime}\right)^{2}\left(2 \mathrm{e}^{\prime}\right)^{4}\left(2 \mathrm{a}_{2}^{\prime \prime}\right)^{2}$
pyramidal PH_{3} :
$\left(1 \mathrm{a}_{1}\right)^{2}\left(2 \mathrm{a}_{1}\right)^{2}(1 \mathrm{e})^{4}\left(3 \mathrm{a}_{1}\right)^{2}\left(4 \mathrm{a}_{1}\right)^{2}(2 \mathrm{e})^{4}\left(5 \mathrm{a}_{1}\right)^{2}$
The four MOs occupied by the first ten electrons should be nearly the same as AOs of the inner shells of the phosphorus atom. The last eight electrons, in valence shell MOs, correspond to the last eight in configuration (1) or (2) for NH_{3}. But because 3d AOs are now available for hybridization, as they surely are not to an appreciable extent in NH_{3}, (3) and (4) are replaced, for the valence-shell MOs, by the following
$\underset{\left(\mathrm{C}_{3 \mathrm{v}}\right):}{\operatorname{pyr} \mathrm{PH}_{\mathrm{g}}}\left\{\begin{array}{l}\mathrm{ma}=\cdots+\alpha_{\mathrm{m}} 3 \mathrm{~s}_{\mathrm{P}}+\alpha_{\mathrm{mz}} 3 \mathrm{p} z_{\mathrm{P}}+\alpha_{\mathrm{md}} 3 \mathrm{~d} \sigma_{\mathrm{P}}+\alpha_{\mathrm{mb}} \mathrm{a}_{1}\left(\mathrm{H}_{3}\right) \\ 2 \mathrm{e}=\cdots+\beta_{\mathrm{p}} 3 p \pi_{\mathrm{P}}+\beta_{\mathrm{d} \delta} 3 \mathrm{~d} \delta_{\mathrm{P}}+\beta_{\mathrm{d} \pi} 3 \mathrm{~d} \pi_{\mathrm{P}}+\beta_{\mathrm{b}} \mathrm{e}\left(\mathrm{H}_{3}\right)\end{array}\right\}$
$\operatorname{planar}_{\mathrm{PH}_{3}\left(\mathrm{D}_{3 \mathrm{~h}}\right)}:\left\{\begin{array}{l}\mathrm{ma}^{\prime}=\cdots \alpha_{\mathrm{mg}}^{\prime} 3 \mathrm{~s}_{\mathrm{P}}+\alpha_{\mathrm{md}}^{\prime} 3 \mathrm{~d} \sigma_{\mathrm{P}}+\alpha_{\mathrm{mh}}^{\prime} \mathrm{a}_{1}^{\prime}\left(\mathrm{H}_{3}\right) \\ 2 \mathrm{e}^{\prime}=\cdots+\beta_{\mathrm{p}}^{\prime} 3 p \pi_{\mathrm{P}}+\beta_{\mathrm{d} \delta}^{\prime} 3 \mathrm{~d} \delta_{\mathrm{P}}+\beta_{\mathrm{h}}^{\prime} \mathrm{e}^{\prime}\left(\mathrm{H}_{3}\right) \\ 2 \mathrm{a}_{2}^{\prime \prime}=\cdots+3 \mathrm{p} z_{\mathrm{P}} \\ 1 \mathrm{e}^{\prime \prime}=3 \mathrm{~d} \pi_{\mathrm{P}} \text { (unoccupied) }\end{array}\right\}$
The ... in eq. 10 and 11 refer to slight admixtures ${ }^{8}$ with inner-shell P atom AOs of proper symmetry. For $\mathrm{a}_{1}\left(\mathrm{H}_{3}\right)$ and $\mathrm{e}\left(\mathrm{H}_{3}\right)$, see eq. 5 . The classification of the 3 d AOs into $3 \mathrm{~d} \sigma, 3 \mathrm{~d} \pi, 3 \mathrm{~d} \delta$ is based on their behavior with respect to rotations around the z -
axis and reflections in planes through it. It will be noted that $3 \mathrm{~s}-3 \mathrm{~d} \sigma$ and $3 \mathrm{p} \pi-3 \mathrm{~d} \delta$ hybridization can occur for either planar or pyramidal PH_{3}, and so may not appreciably favor the one form over the other. Further, however, in complete analogy to NH_{3}, $3 \mathrm{~s}-3 \mathrm{pz}$ hybridization can occur for pyramidal but not for planar PH_{3}, and should cause stabilization of the pyramidal form in the same way as for NH_{3}.

Finally, a distinctive new feature appears in PH_{3}, namely, $3 \mathrm{p} \pi-3 \mathrm{~d} \pi$ hybridization in the 2 e MO , but only in the pyramidal form. Of considerable importance in this connection is the fact, which can readily be seen from the forms of the $3 \mathrm{~d} \pi$ AOs, that their hybrids with $3 \mathrm{p} \pi$ can bend down and "follow' the H_{3} group if the plane of the latter is moved down away from the P atom. Thus $3 \mathrm{p} \pi-3 \mathrm{~d} \pi$ hybridization superposes on the resisting factor toward pyramidalization, which was noted above for the corresponding le valence-shell MOs of NH_{3}, a factor favoring pyramidalization. Further, even without $3 \mathrm{p} \pi-3 \mathrm{~d} \pi$ hybridization, the resistance of the 2 e MOs of PH_{3} toward pyramidalization should be less than for the le MOs of NH_{3}, since the S_{h} values are smaller at all angles (cf. Table III).

Now turning to the VB approach, Table III indicates that the interhydrogen non-bonded repulsion energy, computed by eq. 7, is much smaller for PH_{3} even at the observed bond angle near 90° than for NH_{3} with its bond angle of $106^{\circ} 46^{\prime}$ or even than for planar NH_{3}. The indicated sharp decrease is a simple consequence of the large increase in size of the P atom as compared with the N atom, which is reflected in the observed bond distances ($\mathrm{N}-\mathrm{H}$, $1.014 \AA$.; $\mathrm{P}-\mathrm{H}, 1.415 \AA$.), ${ }^{2 \mathrm{~b}}$ hence in the $\mathrm{H}-\mathrm{H}$ distances and $\mathrm{H}-\mathrm{H}$ overlaps.

Summarizing, pyramidalization of planar PH_{3} should strongly stabilize the a_{1} set of electrons by permitting $\mathrm{s}-\mathrm{pz}$ hybridization ($\mathrm{s}-\mathrm{d}$ hybridization is also present), and should also probably stabilize the e set of electrons by permitting $\mathrm{p} \pi$ - $\mathrm{d} \pi$ hybridization; at the same time it should cause a little destabilization by increasing the $\mathrm{H}-\mathrm{H}$ non-bonded repulsions; the net result must be the observed strong (1.3 e.v. as compared with planar $\left.\mathrm{PH}_{3}\right)^{2 \mathrm{~b}}$ stabilization at a pyramidal form with bond angle $93^{\circ} 18^{\prime}$. As compared with NH_{3}, the pyramidal form should be favored by the incidence of $\mathrm{p} \pi$ - $\mathrm{d} \pi$ hybridization, and by a decrease in $\mathrm{H}-\mathrm{H}$ non-bonded repulsions due to the considerably larger size of the P than the N atom. Decreased electrostatic repulsions between the charges on the H atoms should be an additional minor factor. Similar considerations apply to $\mathrm{AsH}_{3}, \mathrm{SbH}_{3}$ and BiH_{3}. In AsH_{3}, the $\mathrm{As}-\mathrm{H}$ bond distance is $1.52 \AA$., the bond angle is $91^{\circ} 30^{\prime}$, and the stabilization energy relative to planar AsH_{3} is 1.5 e.v. ${ }^{2 \mathrm{~b}}$
The explanation given here is of course a qualitative one, and does not specifically account for the fact that the bond angles seem to be approaching a limiting value of 90° in the higher-row fifth-column hydrides. However (see discussion above), LCAO theory suggests that this fact may be somewhat fortuitous.

Sixth-Column Hydrides

Paralleling the comparison between NH_{3} and
PH_{3}, one can show that p -d hybridization affords a qualitatively reasonable explanation of the smaller bond angle in $\mathrm{H}_{2} \mathrm{~S}$ than in $\mathrm{H}_{2} \mathrm{O}$. For the latter, the electronic structure is
$\mathrm{H}_{2} \mathrm{O}:\left(1 \mathrm{a}_{1}\right)^{2}\left(2 \mathrm{a}_{1}\right)^{2}\left(1 \mathrm{~b}_{2}\right)^{2}\left(3 \mathrm{a}_{1}\right)^{2}\left(1 \mathrm{~b}_{1}\right)^{2}$
The principal bonding MOs are indicated by the letter B. The classification of the MOs is in accordance with the symmetry $\mathrm{C}_{2 \mathrm{v}}$, and their forms, in LCAO approximation, are

$$
\begin{align*}
\mathrm{H}_{2} \mathrm{O}: & \left\{\begin{array}{l}
\mathrm{ma}_{1}=\alpha_{m \mathrm{k}} 1 \mathrm{so}_{\mathrm{o}}+\alpha_{\mathrm{m}} 2 \mathrm{~s}_{\mathrm{o}}+\alpha_{\mathrm{m} 2} 2 \mathrm{pz}_{0}+\alpha_{\mathrm{mb}} a_{1}\left(\mathrm{H}_{2}\right) \\
1 \mathrm{~b}_{2}=\beta_{y} 2 \mathrm{pyo}+\beta_{\mathrm{b}} \mathrm{~b}_{2}\left(\mathrm{H}_{2}\right) \\
1 \mathrm{~b}_{1}=2 \mathrm{p} x_{\mathrm{o}}
\end{array}\right\} \\
& \text { with }\left\{\begin{array}{l}
\mathrm{a}_{1}\left(\mathrm{H}_{2}\right)=\left(1 \mathrm{~s}_{\mathrm{a}}+1 \mathrm{~s}_{\mathrm{b}}\right) /\left[2\left(1+S_{\mathrm{h}}\right)\right]^{1 / 2} \\
\mathrm{~b}_{2}\left(\mathrm{H}_{2}\right)=\left(1 \mathrm{~s}_{\mathrm{a}}-1 \mathrm{~s}_{\mathrm{b}}\right) /\left[2\left(1-S_{\mathrm{b}}\right)\right]^{1 / 2}
\end{array}\right\} \tag{14}
\end{align*}
$$

The $\mathrm{AOs} 1 \mathrm{~s}_{\mathrm{o}}, 2 \mathrm{~s}_{\mathrm{o}}, 2 \mathrm{px}_{0}, 2 \mathrm{pyo}$ and 2 pzo are normalized O atom AOs, while $a_{1}\left(\mathrm{H}_{2}\right)$ and $\mathrm{b}_{2}\left(\mathrm{H}_{2}\right)$ are normalized GOs of the H_{2} group. S_{h} is the overlap integral between the $1 \mathrm{~s} A O s 1 \mathrm{~s}_{\mathrm{a}}$ and $1 \mathrm{~s}_{\mathrm{b}}$ of the two H atoms. The y - and z-axes are chosen in the plane of the molecule (see Fig. 1). H atoms a and b are centered in locations with positive and negative y, respectively. The MO $1 a_{1}$ is nearly pure 1 so (i.e. $\alpha_{1 \mathrm{k}} \approx 1$), while the other a_{1} MOs are nearly free from 1so (i.e, $\alpha_{\mathrm{mk}} \approx 0$). ${ }^{8}$ Quantitative computed values for all the coefficients in (13) have been reported by Ellison and Shull. ${ }^{10}$

Tig. 1.-Skeletons of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{~S}$ drawn to scale. The $\mathrm{b}_{2} \mathrm{AO} 2 \mathrm{py}_{0}$ (for $\mathrm{H}_{2} \mathrm{O}$) and $3 \mathrm{py}-3 \mathrm{~d}_{\mathrm{y}}$ hybrid S atom $\mathrm{b}_{2} \mathrm{AO}$ $\left(\mathrm{H}_{2} \mathrm{~S}\right)$ and their overlap with the $\mathrm{b}_{2}\left(\mathrm{H}_{2}\right) \mathrm{GO}$ (cf. eq. 14) are shown schematically.

For $\mathrm{H}_{2} \mathrm{~S}$, the structure is
$\mathrm{H}_{2} \mathrm{~S}:\left(1 \mathrm{a}_{1}\right)^{2}\left(2 \mathrm{a}_{1}\right)^{2}\left(1 \mathrm{~b}_{2}\right)^{2}\left(3 \mathrm{a}_{1}\right)^{2}\left(1 \mathrm{~b}_{1}\right)^{2}\left(4 \mathrm{a}_{1}\right)^{2}\left(2 \mathrm{~b}_{2}\right)^{2}\left(5 \mathrm{a}_{1}\right)^{2}\left(2 \mathrm{~b}_{1}\right)^{2}$
The first ten electrons correspond approximately to the S atom inner shells, while the last eight, in valence shell MOs, correspond to the last eight electrons in configuration (12) for $\mathrm{H}_{2} \mathrm{O}$. But because 3d AOs are now available for hybridization, (13) is replaced, for the valence-shell $M O s$, by
lelisn1 which indicates that the same factors may reasonably account for the smaller bond angles of the second-row-atom hydrides in both pairs, with the a_{1} and b_{2} sets of MOs in $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{~S}$ performing much like the a_{1} and e sets in NH_{3} and PH_{3}. The analog of planar structures for NH_{3} and PH_{3} would be linear symmetrical structures (bond angle 180°) for $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{~S}$, but of course the latter molecules are much farther from being linear structures than are the former from being planar structures. Nevertheless, it is worth noting that in the a_{1} MOs of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{~S}$, s-pz hybridization would vanish in the linear case but become strong with decreasing bond angle; while in the b_{2} MOs bond-
ing between pyo or pys and $\mathrm{b}_{2}\left(\mathrm{H}_{2}\right)$ would be a maximum in the linear case. In eq. $14, \mathrm{H}-\mathrm{H}$ bonding in the a_{1} MOs and $\mathrm{H}-\mathrm{H}$ antibonding in the b_{2} MOs increase with decreasing angle. For these reasons, the a_{1} MOs should favor a small but the $\mathrm{b}_{2} \mathrm{MO}$ a large bond angle in $\mathrm{H}_{2} \mathrm{O}$.

In $\mathrm{H}_{2} \mathrm{~S}$, d hybridization enters as a new factor which in the $2 \mathrm{~b}_{2}$ MO strongly favors a decreased bond angle, since $3 p y-3 \mathrm{~d} \pi_{y}$ hybridization (like $3 \mathrm{p} \pi-3 \mathrm{~d} \pi$ hybridization in the 2 e MOs of PH_{3}) increases with decreasing angle, and enables the resulting hybrid b_{2} sulfur atom AO to "follow" the H atoms as the angle sharpens (cf. Fig. 1). There is also d hybridization in the $a_{1} \operatorname{MOs}$ ($3 \mathrm{~d} \sigma$ for all angles, $3 \mathrm{~d} \delta$ for angles $<180^{\circ}$). Burns and Gordy ${ }^{5}$ also have previously postulated that d hybridization is important in $\mathrm{H}_{2} \mathrm{~S}$.

Another factor which should favor a smaller bond angle in $\mathrm{H}_{2} \mathrm{~S}$ is decreased $\mathrm{H}-\mathrm{H}$ non-bonded repulsion ($c f$. Table IV), in spite of the smaller bond angle. This can be estimated using

$$
\left.\begin{array}{l}
r_{\mathrm{HH}}=2 r_{\mathrm{OH}} \sin \gamma / 2 \text { or } 2 r_{\mathrm{sH}} \sin \gamma / 2 \tag{17}\\
\mathrm{NBRE}=1 / 2 A I S_{\mathrm{h}}{ }^{2} /\left(1-S_{\mathrm{b}}{ }^{2}\right)
\end{array}\right\}
$$

similar to eq. 6 and 7; but see remarks following Table III.

Table IV
Estimated Non-bonded H-H Repulsions (NBRE)

γ	$\mathrm{H}_{2} \mathrm{O}$			$\mathrm{H}_{2} \mathrm{~S}$			N
	$\begin{aligned} & r \mathrm{HH} \\ & (\AA .) \end{aligned}$	$S_{\text {h }}$	$\begin{aligned} & \text { NBRE } \\ & \text { (e.v.) } \end{aligned}$	γ	$\begin{aligned} & \mathrm{HH} \\ & (\AA .) \end{aligned}$	$S_{\text {h }}$	$\begin{gathered} \mathrm{RE} \\ (\text { e.v. }) \end{gathered}$
$105^{\circ} 3^{\prime}$	1.518	0.37	0.72	$92^{\circ} 16^{\prime}$	1.925	0.24	0.27
90°	1.356	. 44	1.07	90°	1.890	25	29

Summarizing, the incidence of p-d hybridization in the b_{2} MOs, and decreased $\mathrm{H}-\mathrm{H}$ nonbonded repulsions, should favor a smaller bond angle for $\mathrm{H}_{2} \mathrm{~S}$ than for $\mathrm{H}_{2} \mathrm{O}$, and may reasonably be supposed to be the main causes for the observed
smaller angle. The same
$\mathrm{H}_{2} \mathrm{~S}:\left\{\begin{array}{l}\mathrm{ma}_{1}=\cdots+\alpha_{\mathrm{ms}} 3 \mathrm{ss}_{\mathrm{s}}+\alpha_{\mathrm{mz}} 3 \mathrm{p} z_{\mathrm{s}}+\alpha_{\mathrm{md} \delta} 3 \mathrm{~d} \sigma_{\mathrm{B}}+\alpha_{\mathrm{md} \delta} 3 \mathrm{~d} \delta \mathrm{a}_{1}+\alpha_{\mathrm{mh}} \mathrm{a}_{1}\left(\mathrm{H}_{2}\right) \\ 2 \mathrm{~b}_{2}=\cdots+\beta_{\mathrm{y}} 3 \mathrm{pys}_{\mathrm{s}}+\beta_{\mathrm{d}} 3 \mathrm{~d} \pi_{\mathrm{y}}+\beta_{\mathrm{h}} \mathrm{b}_{2}\left(\mathrm{H}_{2}\right) \\ 2 \mathrm{~b}_{1}=\cdots+\gamma_{\mathrm{x}} 3 \mathrm{p} \mathrm{x}_{\mathrm{s}}+\gamma_{\mathrm{d}} 3 \mathrm{~d} \pi_{\mathrm{x}}\end{array}\right\}$ factors should favor even slightly smaller angles for $\mathrm{H}_{2} \mathrm{Se}$ and $\mathrm{H}_{2} \mathrm{Te}$.

Fifth- and Sixth-Column Halides

The bond angles in the derivatives of the fifthand sixth-column halides are less easy to understand than those of the hydrides, since the additional valence-shell electrons in the substituent atoms bring new possibilities of interaction. However, the fifth-column-atom halides will be considered briefly here. For NF_{3}, if it were planar, the MO structure would be

$$
\begin{aligned}
& \left(1 \mathrm{a}_{1}^{\prime}\left[1 \mathrm{~s}_{\mathrm{F}}\right]\right)^{2}\left(1 \mathrm{e}^{\prime}\left[1 \mathrm{~s}_{\mathrm{F}}\right]\right)^{4}\left(2 \mathrm{a}_{1}^{\prime}\left[1 \mathrm{~s}_{\mathrm{N}}\right]\right)^{2}\left(3 \mathrm{a}\left[2 \mathrm{~s}_{\mathrm{F}}\right]\right)^{2}\left(2 \mathrm{e}^{\prime}\left[2 \mathrm{~s}_{\mathrm{F}}\right]\right)^{4} \text { (18) } \\
& \left(4 \mathrm{a}_{\mathrm{i}}\right)^{2}\left(3 \mathrm{e}^{\prime}\right)^{4}\left(1 \mathrm{a}^{\prime \prime}\right)^{2}\left(1 \mathrm{e}^{\prime \prime}\left[2 \mathrm{pz}_{\mathrm{F}}\right]\right)^{4}\left(1 \mathrm{a}_{2}^{\prime}\left[2 \mathrm{py}_{F}\right]\right)^{2}\left(4 \mathrm{e}^{\prime}\left[2 \mathrm{py}_{\mathrm{F}}\right]\right)^{4}(2 \mathrm{a})^{2}
\end{aligned}
$$

Most of the MOs are non-bonding or nearly so, and correspond approximately to F_{3} GOs formed from sets of the F atom AOs indicated in brackets, or in the case of $2 \mathrm{a}_{1}^{\prime}$ to an N atom 1 s AO ; the reference axes for the various atoms are shown in Fig. 2. The MOs $4 a_{1}^{\prime}, 3 e^{\prime}$, and $1 a_{2}^{\prime \prime}$, marked B, are bonding, while $2 a_{2}^{\prime \prime}$, marked A, is antibonding.

With the omission of the last two electrons and with obvious changes in the atomic labels, (18) describes the structure of the planar molecules BF_{3}, $\mathrm{CO}_{3}{ }^{-}, \mathrm{NO}_{3}{ }^{-}$, which then have four pairs of bonding electrons, or, in VB theory language, four bonds (one double bond and two single bonds, with resonance) from the central atom. Inclusion of the $2 a_{2}^{\prime \prime}$ electrons, as in planar NF_{3}, should (more than) cancel the bonding effect of the $1 a_{2}^{\prime \prime}$ electrons, leaving essentially three bonds. Empirically, these evidently are somewhat strengthened on going over to pyrar:idal NF_{3}.

The forms of the bonding and antibonding MOs in (18) are in LCAO approximation

$$
\begin{align*}
& 4 \mathrm{a}_{1}^{\prime}=\cdots+\alpha_{\mathrm{s}} 2 \mathrm{~s}_{\mathrm{N}}+\alpha_{\mathrm{f}} \mathrm{a}_{1}^{\prime}\left(\mathrm{xF}_{\mathbf{z}}\right) \\
& 3 \mathrm{e}^{\prime}=\cdots+\beta_{\mathrm{p}} 2 p_{\mathrm{N}}+\beta_{\mathrm{f}} \mathrm{e}^{\prime}\left(\mathrm{xF}_{3}\right) \\
& 1 \mathrm{a}_{2}^{\prime \prime}=\gamma_{\mathrm{z}} 2 \mathrm{pz}_{\mathrm{N}}+\gamma_{\mathrm{f}} \mathrm{a}_{2}^{\prime \prime}\left(2 \mathrm{~F}_{3}\right) \tag{19}\\
& 2 \mathrm{a}_{2}^{\prime \prime}=\delta_{\mathrm{f}} \mathrm{a}_{2}^{\prime \prime}\left(\mathrm{zF}_{3}\right)-\delta_{2} 2 \mathrm{pz}_{\mathrm{N}}
\end{align*}
$$

where $a_{1}^{\prime}\left(\mathrm{xF}_{3}\right)$ and $a_{2}^{\prime \prime}\left(\mathrm{zF}_{3}\right)$ are similar to $\mathrm{a}_{1}^{\prime}\left(\mathrm{H}_{3}\right)$ in eq. 5 but are constructed from sets of $2 \mathrm{px}_{\mathrm{F}}$ and $2 \mathrm{pz}_{\mathrm{F}}$ AOs, respectively, instead of from $1 \mathrm{~s}_{\mathrm{H}}$ sets, $\mathrm{e}^{\prime}\left(\mathrm{xF}_{3}\right)$ is like $\mathrm{e}^{\prime}\left(\mathrm{H}_{3}\right)$ in eq. 5 but constructed from $2 \mathrm{px}_{\mathrm{F}}$ instead of $1 \mathrm{SH}_{\mathrm{H}}$ sets. ${ }^{11}$

In actual pyramidal, NF_{3}, there is mixing between some of the MOs of (18), 一a a_{1}^{\prime} and $a_{2}^{\prime \prime}$ both become $\mathrm{a}_{1}, e^{\prime}$ and $e^{\prime \prime}$ become e, and a_{2}^{\prime} becomes a_{2} (cf. Table II),-and (18) becomes

$$
\left(1 a_{1}\right)^{2}(1 e)^{4}\left(2 a_{1}\right)^{2}\left(3 a_{1}\right)^{2}(2 e)^{4}\left(4 a_{1}\right)^{2}(3 e)^{4}\left(5 a_{1}\right)^{2}(4 e)^{4}\left(1 a_{2}\right)^{2}
$$

B B

$$
\begin{equation*}
(5 \mathrm{e})^{4}\left(6 \mathrm{a}_{1}\right)^{2} \tag{20}
\end{equation*}
$$

Pyramidalization may be attributed partly or largely to essentially the same factors as in NH_{3} ($2 \mathrm{~s}_{\mathrm{N}}-2 \mathrm{pz}_{\mathrm{N}}$ hybridization which becomes possible when $a_{2}^{\prime \prime}$ mixes with a_{1}^{\prime}, both becoming a_{1}). However, the mixings are more complicated than in NH_{3}, because of the extra electrons from the fluorine valence shells. In particular, the presence of $1 \mathrm{e}^{\prime \prime}$ in (18), which can mix with $3 \mathrm{e}^{\prime}$ on pyramidalization, may well reduce the resistance to pyramidalization which characterizes $1 e^{\prime}$ of NH_{3}.

Non-bonded repulsions between F atoms in NF_{3} would be expected theoretically to be smaller than between H atoms in NH_{3}, since, although there are more valence-shell electrons, the F atoms in NF_{8} are both smaller and farther apart

[^1]

Fig. 2.-Local reference axes for atoms in planar $A B_{\mathbf{3}}$. All z-axes point upward.
than the H atoms in NH_{3}. This difference may perhaps be the main reason for the somewhat smaller valence angles in NF_{3} than in NH_{3}.

For $\mathrm{PF}_{3}, \mathrm{MO}$ electron configurations essentially like (18) and (20) except for augmentation by electrons corresponding to $2 \mathrm{Sp}^{2} 2 \mathrm{pp}^{6}$ can easily be written. Hybridization with $3 \mathrm{~d}_{\mathrm{p}}$ AOs now also enters, but in contrast to PH_{3}, d hybridization can occur in all the MOs (except 1a ${ }_{2}^{\prime}$) for both planar and pyramidal $\mathrm{PF}_{3} ; \mathrm{d} \sigma$ can mix into a_{1}^{\prime}, $\mathrm{d} \delta$ into e^{\prime}, and $\mathrm{d} \pi$ into $\mathrm{e}^{\prime \prime}$ for planar PF_{3}; or $\mathrm{d} \sigma$ into a_{1}, $\mathrm{d} \delta$ and $\mathrm{d} \pi$ into e, for pyramidal PF_{3}. Thus d hybridization may be a less important factor favoring pyramidalization than in PH_{3}. However, as in the latter, it should at any rate give some added strength to the bonds, equivalent in part to partial double bonding in VB theory language.

The fact that the bond angle does not decrease from NF_{3} to PF_{3} and AsF_{3} (cf. Table I) may perhaps be attributed to the existence of appreciable and increasing electrostatic repulsions among the F atoms; the $\mathrm{P}-\mathrm{F}$ and $\mathrm{As}-\mathrm{F}$ electronegativity differences are large, making the charges on the F atoms here much larger than on the H atoms in PH_{3} and AsH_{3}, and considerably larger than on the F atoms in NF_{3}.

Similar considerations apply to the halides of sixth-row atoms. The exceptionally large bond angle for $\mathrm{Cl}_{2} \mathrm{O}$ (larger than for $\mathrm{F}_{2} \mathrm{O}, c f$. Table I) seems most reasonably attributable to the relatively large size of the Cl atoms hence to unusually large non-bonded repulsions. It is also reasonable to believe that these repulsions are not so important in most of the other halides.

Although the foregoing discussion of the halides is sketchy, it touches on most of the factors which seem likely to be important in controlling the bond angles. Because of the complexity of these factors, a more detailed discussion would scarcely be justified.
Chicago, Illinois

[^0]: (8) Some admixture of inner shlell and outer-shell AOs is necessary;

[^1]: (11) The \cdots in $4 a_{1}^{\prime}$, represents a linear combination of ai $\left(1 \mathrm{sF}_{3}\right)$ and especially $a_{1}^{\prime}\left(2 \mathrm{sF}_{8}\right)$ in small amounts, and \cdots in $3 \mathrm{e}^{\prime}$ represents a linear combination of $e^{\prime}\left(1 \mathrm{sF}_{8}\right), \mathrm{e}^{\prime}\left(\mathrm{yF}_{8}\right)$, and especially $\mathrm{e}^{\prime}\left(2 \mathrm{sF}_{8}\right)$, in small smounts.

